Synthesis of γ-AlOOH nanocrystals with different morphologies due to the effect of sulfate ions and the corresponding formation mechanism study.

نویسندگان

  • Yuguo Xia
  • Li Zhang
  • Xiuling Jiao
  • Dairong Chen
چکیده

The investigation of the metal oxide/inorganic ion interface at the atomic level represents a fundamental issue for the understanding of chemical and physical processes involved in several fields such as catalysis, adsorption, directed synthesis and the mechanistic study of crystal growth. In this paper, a combined hydrothermal synthesis and computational approach based on DFT theory is adopted to investigate the effects of sulfate ions on the final morphology of γ-AlOOH. The quantum mechanical calculations reveal that the sulfate ions interact with γ-AlOOH facets through surface hydroxyls and act as a morphology-directing agent. The adsorption type and chemical bonds between the sulfate ion and γ-AlOOH are discussed. The formation of nanosheets and nanorods of γ-AlOOH is controlled by thermodynamic factors. Moreover, the HR-TEM images reveal the growth directions and exposed planes of boehmite, indicating an oriented-aggregation process which is consistent with the DFT calculations. Overall, all the morphologies of boehmite suggested by the calculations are confirmed by experimental results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale synthesis and formation mechanism study of basic aluminium sulfate microcubic crystals.

Cube-like basic aluminium sulfate crystals were prepared by a facile template-free hydrothermal strategy. The microstructures, morphologies and textural properties of as-synthesized material were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy. X-ray crystallography reveals that cubic basic aluminium sulfate pos...

متن کامل

The Crystallization Effect on the Optical Properties of Oxyfluoride Glass-Ceramics Containing CaF2 Nanocrystals Doped with Y3+ Ions

In the present study, the oxyfluoride glasses of SiO2-Al2O3-CaF2 system containing different amounts of Y3+ ions were prepared through the convenient melting method. The crystallization temperatures and size of the CaF2 nanocrystals were obtained from DTA curves and XRD patterns, respectively. As a consequence, the optimum amount...

متن کامل

The Effect of Sulfate Concentration on COD Removal and Sludge Granulation in UASB Reactors

Four identical 37.5 Liter UASB reactors R1, R2, R3 and R4 were used to study the effect of sulfate concentration on granule formation. Diluted molasses with COD range 1000–1300 mg/l were used as feed and acclimated cow manure was used as seed. Concentration of sulfate ions in the four reactors were 100, 500, 1000 and 1500mg/l. Granules were observed in R2 after 33 days from startup time, while ...

متن کامل

Optimization of Nanocrystals NaX Zeolite Synthesis with Different Silica Sources

The effects of varying the silica source on synthesis of NaX zeolite crystals via conventional hydrothermal method have been investigated. Five different silica sources were selected while other parameters like Al source, reaction and aging time, SiO2/Al2O3 molar ratio and temperature were same. The prepared products were characterized by XRD technique. The results showed that different cry...

متن کامل

Studies on Thermal Decomposition of Aluminium Sulfate to Produce Alumina Nano Structure

Aluminum sulfate nano structures have been prepared by solution combustion synthesis using aluminum nitrate nonahydrate (Al(NO3)3.9H2O) and ammonium sulfate ((NH4)2SO4). The resultant aluminum sulfate nano structures were calcined at different temperatures to study thermal  decomposition of aluminum sulfate. The crystallinity and phase of  the as-synthesized and calcined samples were char...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 41  شماره 

صفحات  -

تاریخ انتشار 2013